130=16t^2+112t+6

Simple and best practice solution for 130=16t^2+112t+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 130=16t^2+112t+6 equation:



130=16t^2+112t+6
We move all terms to the left:
130-(16t^2+112t+6)=0
We get rid of parentheses
-16t^2-112t-6+130=0
We add all the numbers together, and all the variables
-16t^2-112t+124=0
a = -16; b = -112; c = +124;
Δ = b2-4ac
Δ = -1122-4·(-16)·124
Δ = 20480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20480}=\sqrt{4096*5}=\sqrt{4096}*\sqrt{5}=64\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-112)-64\sqrt{5}}{2*-16}=\frac{112-64\sqrt{5}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-112)+64\sqrt{5}}{2*-16}=\frac{112+64\sqrt{5}}{-32} $

See similar equations:

| -9x-45=-2+60 | | 2/3n=62 | | 15+5x=14x-6 | | 2x+(-6x)+5=(-15) | | w/25=2 | | 0.32x=18 | | -(-5+3x)=4(5x+3) | | 2+4x-4.9x^2=0 | | 17-x=x | | 4.3a+1.7a=41.94 | | 14x-6=15+5x | | -(-5+3x)=4(5x+3 | | 2y^2-20y-48=0 | | 12x-3x+90=12x+39 | | x+3x+(3x*2)=840 | | 75=19x-1 | | (5x^2)(-3x-2)=0 | | -10=14v=14v | | 3.6a-14=0 | | 6m=46 | | -8(a+3)=-3(a-2) | | 5x+8=106 | | 15.99x+7.99=100 | | x+32/5=21/6 | | 1=-3+4p+2p | | 2/3(x-5)=5/6(2x-8) | | 50.45x+57.95=60x | | 4u+14=32 | | 6x+6=3(x=6) | | 1,3483=-0,000004x^2+0,0008x+1,326 | | -5-15v=10 | | 61-2y=8 |

Equations solver categories